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The analytic and numerical procedures necessary to write a general method of 
characteristics computer code are presented. The theory of characteristics is ap- 
plied to the partial differential equations of an inviscid fluid, the geometry of the 
characteristics is determined, a procedure for finite-differencing the compatibility 
equations is developed and the stability of the procedure is analyzed. The details of 
the finite-difference network and of a successful organization of the network to cal- 
culate complete flow fields are presented. The flow between a detached shock wave 
and the surface of a two-dimensional body in unsteady motion has been calculated. 
The results of several calculations of specific body motions are presented. From the 
results it is concluded that practical calculations of multidimensional unsteady flows 
can be accomplished with an extensive coding effort and a reasonable amount of 
computer time. 

I. INTRODUCTION AND NOTATION 

The extension of the method of characteristics to the calculation of problems 
involving more than two independent variables has been considered for many 
years. Not until the last five or six years, however, have digital computers been 
available with the speed and capacity for attempting three independent variable 
problems. The history of the development of multidimensional characteristic 
methods is outlined and an extensive list of references is given in [l] and [2]. 
Some recently published papers on the method are [3]-[6]. The first attempts at 
performing multidimensional characteristic calculations have been, understand- 
ably, oriented toward solving rather specific flow configurations rather than dev- 
eloping a general approach which might be used on most problems of interest. 
This paper presents the results of new work in the development of a practical and 
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general method of characteristics which can be applied to problems involving 
more than two independent variables. 

Before going into the details of the method of characteristics, a brief discus- 
sion contrasting the method of characteristics with “standard finite difference 
methods” [7] is in order. First of all, the method of characteristics uses a char- 
acteristic or curvilinear net while the standard finite difference approach uses 
a rectangular net and usually uses artificial viscosity [8] or a particular choice of 
differencing [9]. These latter devices automatically calculate shock waves, but at 
the expense of unrealistically spreading them so that continuous variation of 
flow properties is obtained, rather than a discontinuous jump. However, it is 
possible to treat shock waves explicitly as is done in the method of characteristics. 
The main disadvantages of the standard approaches are that the use of a rectan- 
gular net does not give the correct treatment of singularities such as centered 
rarefactions and the use of artificial viscosity requires that the “time step” be 
smaller for reasons of numerical stability, [lo] thus increasing the required number 
of computations to obtain a given solution. With the method of characteristics, 
all separate waves are delineated correctly, while with the standard approach, 
these waves are generally diffused, thus requiring a finer mesh to obtain a given 
detail in the solution. Of course, the method of characteristics is logically more 
complicated and therefore, involves a more difficult machine coding effort while 
the standard approach can solve both complex and simple flows with the same 
ease because of the automatic handling of shock waves. 

The method of characteristics is potentially more accurate than standard finite- 
difference approaches with artificial viscosity for the same amount of computer 
calculation time. However, this is at the expense of a more complicated coding 
effort. If a rather general method of characteristics procedure can be formulated 
and developed to solve arbitrary multidimensional and unsteady inviscid flows 
of general interest, any extra effort required for initial development and coding 
can be justified by the general applicability of the operational calculation proce- 
dure. Thus, rather than having to write a separate code for each flow problem, 
a general code can be developed to handle a large range of flow problems. This 
paper reports work that has been begun in the development of such a general 
purpose method of characteristics calculation procedure. 

Notation 

B function describing body surface [Eq. (22)] 
h specific enthalpy 
s specific entropy 
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Pi characteristic coordinates 

Y ratio of specific heats 

9 coordinate transformation matrix 

Superscripts : 

( 1” indicates the value of a quantity at the nth iteration step 

Subscripts : 

0 1,2,3 refer to the numbered points in the finite-difference network 

( LP,Q indicates that either entropy, pressure, or density is held constant in 
the thermodynamic derivative 

II. SUMMARY OF EQUATIONS 

The equations of change for a compressible inviscid fluid which are to be 
solved here are: 

Mass Conservation 
&I/& + v ’ (@V) = 0; (14 

Momentum Conservation 

e(DV/Dt) + vp = 0; (lb) 

Energy Conservation 
e(Dh/Dt) - DplDt = 0; UC) 

Equation of State 
h = h(p, e>, (Id) 

where 
D/Dt=d/dt+V.v. 

Additional dependent variables can be introduced with appropriate thermodynam- 
ic relations. 

3 = S(P, e>, @a) 

a = 4p, e), (2b) 

T= T(p,e>. @) 

The more complex case of a nonequilibrium chemically reacting and electrically 
conducting fluid can be formulated, but these more complicated flows cannot 
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be handled with presently available computers. Therefore, only the simpler mod- 
el which can be calculated with presently available computers is formulated 
here. 

Upon substituting Eq. (Id) into (lc), the enthalpy h can be eliminated to give 

a”(D@/Dt) - Dp/Dt = 0, (3) 

where the velocity of sound is given by 

d = - (Jg),[ (g$- $I-’ (4) 

Substituting Eq. (2a) into (3) and utilizing the fact that 

gives 
a2 = (~P/&?).¶ (5) 

DslDt = 0. (6) 

Eqs. (3) and (6) will sometimes be more useful forms of the energy conserva- 
tion equation than Eq. (1~). 

The general characteristic theory of hyperbolic partial differential equations 
is given by Courant and Hilbert [ll]. Specific application of the theory to fluid 
mechanics problems is made by Courant and Friedrichs [12]. A clear discussion 
of the application of the theory to multidimensional fluid mechanics is given by 
von Mises [13]. The classical theory is not reiterated here. Summaries of the 
portions of the theory utilized in the numerical method of characteristics are given 
in [14] and [2]. 

Utilizing Cartesian coordinates (x, y, z, t), the characteristic determinant for 
Eqs. (1) yields the following characteristic equation. 

($q{($q2 - d [($y+ ($y+ (-gq2]} = 0. (7) 

The characteristic hypersurface is defined as 

&(x, y, z, t) = constant, (8) 

where a transformation of coordinates of the form 

has been introduced. Eq. (7) is a partial differential equation which leads to two 
sets of real characteristic hypersurfaces given by 
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D,b,/Dt = 0, (10) 

Equation (10) corresponds to hypersurfaces made up of particle lines while Eq. 
(11) results in the quadratic hypersurfaces usually termed Mach hyperconoids. 
The latter are just the envelopes of sound waves that would appear in the fluid 
if a point disturbance were placed at a point in the flow. Equations (10) and (11) 
define the geometry of the characteristic hypersurfaces which is then used in the 
synthesis of the finite-difference network. 

Utilizing the classical characteristic theory it is possible to derive compatibility 
equations for each of the characteristic hypersurfaces. These equations have the 
property that derivatives in a direction normal to the characteristic hypersurface 
do not appear. The compatibility equation corresponding to the Mach hyper- 
conoid, Eq. (II), is 

(12) 

Note that derivatives in the &direction do not appear in (12). The particle line, 
Eq. (lo), is a threefold characteristic so three compatibility equations are avail- 
able, but only one is needed in the numerical procedure. By inspection it is seen 
that Eq. (lc) is a compatibility equation for the particle line because it contains 
substantial derivatives only. A more useful form of the equation is (6), however, 
which can be written in the form 

ds/d/!$ = 0 (13) 

where the pz coordinate is chosen to lie along the particle line. Thus, Eq. (13) 
can be integrated to give 
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s = constant (on a particle line), (14) 

which is the final compatibility equation that is needed. 
Equations (12) and (14) are solved in the numerical method of characteristics 

by a finite-difference procedure. Equation (12) is put in finite-difference form by 
introducing the following typical approximation for a derivative. 

ww, = (u2 - dKx2 - .a2 + (Y2 - YlY + b2 - zA2 + (t2 - h)21-“2 (15) 

The o2 coordinate has been chosen to lie along a line in the characteristic hyper- 
surface from a point where the solution is known and denoted by a subscript 1 
(initial data point) to a point where the solution is to be determined denoted by 
a subscript 2. The derivatives in the p3- and p,-directions are evaluated numerically 
by any one of a number of means. This is discussed in detail in the next section. 
The derivatives of the form C@,/i3y in (12) are given by the coordinate transforma- 
tion (9). This transformation is determined by requiring that (I I) hold, that the 
p,-direction be oriented as specified above and, for example, that the ,& coordi- 
nates be orthogonal [14]. 

In order to locate the position (the X, y, z, t coordinates) of the new point at 
which the how field properties are to be calculated, the intersections of certain 
characteristic hypersurfaces must be determined. For the purpose of determining 
such intersections the Mach hyperconoid is approximated locally by the Mach 
hypercone. The hypercone is locally tangent to the hyperconoid and its equation 
is easily derived from the geometry of sound waves assuming a locally uniform 
steady flow. The equation of the hypercone is 

(x - Xi)” + (y - yJ2 + (z - Zi)” + (t - t$$42 + Y2 + IV2 - a2) 

- 2u(x - xJ(t - ti) - 2v(y - yi)(t - ti) - 2w(z - zi)(t - ti) = 0, (16) 

where (xi, yi, zi, ti) are the coordinates of the local point under consideration. 
In this section the equations needed for the numerical method of characteristics 

have been summarized. In the next section the numerical procedures and iteration 
schemes required to solve these equations are outlined and the choice of a char- 
acteristic network is discussed. 

III. OUTLINE OF THE NUMERICAL METHOD 

To keep this paper to a reasonable length the numerical method will be outlined 
rather than discussed in detail. Full details including program listings of the 
original version of the method are given in [14]. The method described here is a 
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modified version of the original, but the fundamental principles are the same. Also, 
for the sake of brevity, only the two-dimensional unsteady case will be discussed 
here. The actual calculations were for this case and extension to the full three- 
dimensional unsteady case is rather simple [14]. 

In applying the method of characteristics to problems of more than two inde- 
pendent variables the fact that characteristic surfaces are encountered rather 
than characteristic lines introduces an additional “degree of freedom” in the choice 
of the finite-difference network. This additional “degree of freedom” allows the 
synthesis of many different networks and indeed Fowell [15] discusses five such 
networks while even more have been proposed [3]. The choice of a network in- 
volves two considerations. First, it must be numerically stable and second, it 
should be computationally efficient. Unfortunately, neither of these considera- 
tions are simply decided. 

Stability can be judged using the Courant-Friedrichs-Levy (CFL) necessary 
condition and the stronger, but less simply applied, von Neumann condition [3]. 
Both conditions rest ultimately on a heuristic approach due to the lack of an exact 
test for stability of nonlinear partial difference equations. The simple procedure 
adopted here is to apply the CFL condition to the geometry of the network and 
to check heuristically by calculating a known flow field. 

The computational efficiency of a network is defined here as being inversely 
proportional to the amount of effort required to obtain numerical results. This 
effort involves the coding of the finite difference procedure and the amount of 
time and storage capacity required by the computer to obtain a result of a given 
degree of accuracy. This, too, is difficult to judge short of actually coding the pro- 
cedures and making direct comparisons with test problems. Nearly all such jud- 
gements made before actual coding must be subjective. 

Because of the difficulties in evaluating the stability and efficiency of a network 
and the large amount of time required to code a multidimensional procedure, 
the network used in this study must be said to have evolved rather than having 
been optimized. This does not mean that the evolutionary process could not be 
approaching an optimum, but that this optimum has not yet been reached. 
The network was termed the modified tetrahedral characteristic line network in 
[14], and the name is still applicable even though it has been modified further. 
The modifications have slightly changed the advantages and disadvantages orig- 
inally cited [14], [15] for the network, but not to the extent that a different net- 
work should be chosen as the most efficient. The network for a basic field point 
is shown in Fig. 1. 

The method of characteristics starts with data (u, V, p, s) given on an initial 
data surface. The solution is obtained on an adjacent surface at a later time in 
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the (x, y, t) space. The solution can be obtained at three different types of points 
at the present time. These are points in the field, points on a shock wave bounding 
the field, and the points on a body surface. It also is possible to obtain solutions 
on shock waves, rarefaction waves from body-surface corners, and contact sur- 
faces within the field, but these procedures have not yet been coded. We will 
briefly describe the field, shock, and body-point procedures. 

INITIAL DATA 

FIG. 1. The finite-difference network. 

The basic field point procedure is shown in Fig. 1. First the desired location 
(xq, y,, t4) of the new data point P, is determined in such a way as to keep the 
spacing of the data points regular. This process is discussed further below. The 
base points, P, , P, , P, , are located in the initial data surface such that the desired 
location of P4 is approximately obtained. It should be noted that, for the calcula- 
tions reported here, the data surfaces were almost planar surfaces which closely 
approximate t = constant planes. This is not necessary to the calculation, but 
it does make for convenience. Thus, P,, P,, P, are equally spaced on a circle 
in the initial data surface whose center is located at (x, - uq At, ys - vp At, 
t, - At), where At is the desired time step size and u4 and v4 are approximate 
values of the velocity components at P, obtained, for example, by interpolation 
in the initial data surface for the point located at (x,, y4, t, - At). The radius 
of the circle is given by a4 At where a, can be determined in the same way as 
up and vq. 

At is limited by the CFL condition which states that the domain of dependence 
of the partial differential equations must be contained within the domain of 
dependence of the difference scheme. For Fig. 1 this means that the circle inscribed 
through P, , P,, P, must lie entirely within the polygon obtained by connecting 
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with straight lines the outermost initial data points used in the interpolation. 
The radius of this circle is adt and thus it is seen that an upper limit is placed 
on dt such that no part of the circle may fall outside of the polygon. 

Now that the locations of the base points P,, P,, P, have been determined the 
properties at these points are determined by interpolation among the initial data 
points P, of Fig. 1. This is done using a 5 x 5 array of data points and orthogonal 
polynomials to give a second-degree, three-independent-variable, least-square 
“surface” fit to the data. The interpolation is performed with this “surface” fit. 
After the dependent variables (u, v, p, s) are obtained for P, , P, , P, the coordinates 
and these same variables for P, are determined. The coordinates are obtained by 
solving Eq. (16) written for the points P, , P, , P, (i = 1, 2, 3) using the Richmond 
iteration procedure [16] which is accurate to third order in the step size. The 
compatibility equation (12) is then written for the three lines PIP,, P,P,, P,P, 
using values for the coefficients evaluated at the base points and these equations 
are solved to give uq, II~, p4. The derivatives in the /&direction are obtained in 
the following manner. For example, consider the u derivatives 

au au ax au ay au at 
ag, 7G a@, +TjF 7jT9- +Z ap, (17) 

The wag,, aY/ah, am4 are obtained from the coordinate transformation, 
and the other partial derivatives from 

(4 - 4) = g (X4 - xi) + $t2 (y, - yi) + $ (t4 - ti) (i = 1, 2, 3). (18) 

At the first step in the iteration, uq can be approximated as 

The entropy s is determined by projecting the particle line back from P4 to obtain 
its intersection with the initial data surface and interpolating among the points 
on the initial data surface as before because the entropy is constant along the 
particle line. 

Finally, the solution of Eqs. (12) and the projecting of the particle line is repeated 
in an iteration procedure where average values of the coefficients in the equations 
are used instead of the values at the base points. These averages are taken between 
the appropriate base point and the new point. This procedure is similar to the 
modified Euler’s method which is sometimes referred to as Heun’s first method 
for ordinary differential equations [16]. When applied to ordinary differential 
equations, the truncation error is third-order in the step size. The procedure as 
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applied here to the partial differential equations, does omit some terms which are 
second-order in the step size through the assumption that the partial derivatives 
in Eq. (18) are constant over the network. The only way to overcome this defi- 
ciency is to introduce a more elaborate method to numerically evaluate the deriv- 
atives in the &direction. 

The calculation of the solution at a point on a bounding shock wave is similar 
to the procedure for a field point, but differs in a few details. First, one of the 
base points, P, say, must be located on the shock wave. For each such shock point 
in addition to the usual dependent variables (u, V, p, S) the components of the 
shock wave surface unit normal vector, N, , N,, N, , must be available. The shock 
wave is approximated locally as a plane passing through the shock point and lying 
normal to the unit normal vector. The other two base points, P, and P,, are again 
field points located on the circle which is the intersection of the Mach cone through 
the new shock point with the initial data surface. The positioning of these points 
and interpolation to obtain the dependent variable is the same as in the field- 
point procedure. The coordinates of the new shock point are determined by finding 
the intersection of the two Mach cones with the plane which is the local approxi- 
mation to the shock wave. Next, the shock-wave equations can be solved to give 
the flow properties behind the shock at the new shock point, [14] but these prop- 
erties do not necessarily satisfy the two compatibility equations, (12), that can 
be written for the lines PIP, and P2P,. Thus the dependent variables are expanded 
in Taylor series in the following form: 

u4 
cn+u = $L) ANZ’ (20) 

where the superscripts refer to the iteration cycle and AN,, is the correction 
required to the x-component of the unit normal vector in order to satisfy the com- 
patibility equations. The derivatives in (20) are obtained from the shock wave 
equations. When (20) together with similar expressions for u and p are substituted 
into the two compatibility equations, they can be solved for AN%, and LIN,~. 
Note that dNt, can be obtained from 

(N, + AN,)” + (N, + A&j2 + (Nt + A N,12 = 1 (21) 

after the other two corrections have been determined. The entire process is then 
repeated using average values for the coefficients in the equations just as in the 
field point iteration procedure. 

The third type of point that is calculated is a point lying on the body surface. 
This procedure is very similar to the shock point procedure discussed above. One 
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of the base points is located on the body. In contrast to the shock point, body- 
surface unit normal vector components are not specified for the body points. 
The body is described by a function of the form 

B(x, y, t) = 0. (221 

All references to this function in the program are combined into one subroutine. 
Then, in order to specify a different body motion, only this single subroutine need 
be changed. The body surface is still treated locally as a plane which is taken as 
the plane of tangency of the surface, Eq. (22), at the point being considered. As 
in the shock point, the new body point is located at the intersection of two Mach 
cones from base points in the field with the plane tangent to the body surface 
at the body base point. The two compatibility equations for the base points in 
the field are solved simultaneously with the boundary condition that fluid does not 
pass through the body surface, 

dB dB 
aB 0 -Jp+-ay”+Y&-‘~ (23) 

This determines u, v, and p. Entropy s is determined as in the field point by pro- 
jecting the particle line back to its intersection with the initial data surface and 
interpolating. The process is then repeated using average values for the coefficients 
in the equations in an iteration process just as in the field and shock points. 

The three basic elements of calculating field, shock, and body points must be 
combined in a master program to calculate a complete flow field. The organization 
of this program is outlined next. First, the size of the time step, At, must be de- 
termined. This is done by searching the net of points to find the maximum At 
which does not violate the CFL condition. Then a At of 0.75 of this maximum is 
used. The factor 0.75 is a safety factor to ensure stability. 

Half of the complete net of points used to calculate the blunt body flow discus- 
sed in the next section is shown in Fig. 2. This shows the (x, y)-locations of points 
in the initial data plane. The basic calculation unit is the 5 x 5 array of points 
shown in the center of Fig. 2 outlined by the solid line. The initial data is fitted 
with the orthonogonal polynomial procedure over this 5 x 5 array. New field 
points on the next t = constant surface, with (x, y)-locations close to those in- 
dicated by the six flagged points inside the array, are calculated using the same in- 
terpolation fits. These six particular points are chosen such that their domains 
of dependences (the circle inscribed through P, , P, and P, in Fig. 1) lie closest to 
the center of the 5 x 5 array. On the edges of the net the fits are used for more 
than six points as shown by the outlined area in the right-hand corner of the net 
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in Fig. 2. Here the nine flagged points indicate those points which are used with 
the same interpolation fit. Note that even though points on the edge of the fitted 
area are calculated the CFL condition is not violated because the flow is supersonic 
in this area and hence the domains of dependence are well within the interpola- 
tion area. 

-1.6 
I I - “^_.I ^ .̂.,.r 

-0.21 I I I I I I I I I I I 
-0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

Y. 

FIG. 2. Organization of the calculation procedure. 

Interpolations for properties along the shock wave and body require single 
independent variable fits of second degree. A basic array of seven points is used 
for the interpolation at a single central point as shown for the body points at the 
bottom of Fig. 2. A fit over eight points is used for the interpolation at three 
shock points as shown at the top of the figure. These interpolations are used to 
determine s for the body points and N, , NY, N, and other properties for the shock 
points. 

The master program controls the calculation by sequentially stepping through 
the net, fitting the 5 x 5 arrays of points, and calculating the new points on the 
next data surface. The desired (x, y)-location of the new points is obtained by 
equally distributing the seven field points along the ray from a body point to a 
corresponding shock point. In this way, for steady flow the existing order in the 
net is maintained and in unsteady distorting flows some degree of order is retained. 

Various other refinements have been added to the calculation procedure which 
are not absolutely necessary to obtain successful results, but improve either the 
form or accuracy of the results. For example, it was found desirable to add some 
active adjustment to the procedure in order to try to retain almost planar t = con- 
stant data surfaces. Thus, at a particular time step, an average time is computed 
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and the diameter of the base circle through P,, P,, P, in Fig. 1 is proportionally 
increased (decreased) slightly when the time of the point with the desired (x, y) 
coordinates in the initial data surface is less (greater) than the average time for 
the initial data surface. This actively controls the t-coordinates of the points. 

Another refinement has to do with the location of the base points in the field. 
In Fig. 1, Pi, P, , and P3 can be located arbitrarily around the circle. It was found 
by numerical experiments that higher accuracy is obtained by spacing them evenly 
about the circle, but this still leaves a single degree of freedom in orienting the 
points. It was found that higher accuracy could be obtained by doing the calcula- 
tion twice, once with the set of points indicated by circles in Fig. 3(a) and once 
with the set indicated by squares, and then averaging the two results. The improve- 
ment in accuracy in this case is mainly in the reduction of the shock wave velo- 
city drift [see the discussion of Fig. 5(b) in the next section] by as much as a fac- 
tor of two and through better control of the (x, y)-positions of the points. This 
procedure was suggested by the work of Strom [5]. Actually, the calculation does 
not take twice as long as when only one set of base points is used, because when 
the second calculation is performed the reults of the first calculations are used 
as initial estimates and these are very good; so only a few more iterations are 
necessary to converge the second calculation. Two sets of field base points are 
also used in the same way for the shock point. The same shock base point is used, 
however. It has been found experimentally, that the highest accuracy is obtained 
by locating the points asymmetrically relative to the shock wave as shown in Fig. 
3(b). A similar study was done for the body point. It was found that the field 
base points should be symmetrically located relative to the body, but, in trying 

0 

(A) FlELi POINT 

WAVE 

FIRST SET OF POINTS 
SECOND SET OF POINTS 

FIQ. 3. Location of base points in the field. 
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to determine the best location of the two sets of points, opposing accuracy require- 
ments were found. U, v, and p could be made more accurate at the expense of 
accuracy in X, y, and I or vice versa, so the best compromise was found to be a 
single set of points located uniformly as shown in Fig. 3(c). 

This completes the outline of the numerical method and the organization of 
the program. Of course, many details such as the form of input and output both 
digital and graphical cannot be taken up here and probably should be tailored 
to the particular type of flow under consideration and the type of computation 
facilities being used. 

IV. RESULTS OF RECENT CALCULATIONS 

The calculations reported on in this section were carried out on an IBM 7094 II 
direct coupled to a 7040 for input and output. Graphical results were plotted off- 
line on a 1627 plotter. 

All flow fields calculated here started with the same data on the initial data 
surface, t = 0. This data was obtained from the work of Belotserkovskii [17] 
where it was calculated by the method of integral relations using two strips. This 
initial flow is for a perfect gas (r = 1.4) at conditions approximately equivalent 
to an altitude of 50 000 feet with a freestream Mach number of 5. The body sur- 
face is a circular cylinder with its axis normal to the freestream velocity. The data 
was given by Belotserkovskii for the net shown in Fig. 2 except that only three 
evenly spaced rings of field points were given. The four additional rings of field 

INCREMENT 0.5 

-2.0 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2.0 

Y AXIS 

FIG. 4. Initial data. 
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points were added by interpolation using the second-degree orthogonal poly- 
nomial procedure mentioned above. The original Belotserkovskii data was given 
to three and in a few cases four decimal digits. The calculations were performed 
using mainly single precision arithmetic (eight decimal digits) though in a few 
places where accuracy was found to be important double precision was used. 
The iterations were generally converged to five digits. This initial data is shown in 
Fig. 4 where on the left the velocity vector field is shown and on the right the pres- 
sure field. Note that there are no arrowheads on the velocity vectors and the 
squares marking the location of the data points are at the base of the vectors. Only 
the maximum and minimum pressure contours are labeled. The increment from 
one contour to the next is 500 lb/ft.2, as given on the figure. All velocity vector 
and pressure-field plots in this paper were directly generated by the computer. 

The results of two flow calculations are reported in this paper. Many others 
have been calculated and more calculations of this sort are planned in an effort 
of continuing improvement and application of the method, 

The original version of the program was checked for errors using simple one- 
dimensional cases and against hand calculations. This gave assurance that no 
major bugs were in the program and that the finite-difference approach was sound. 
No method of characteristics procedure or finite-difference solution is completely 
free of errors. There are roundoff and truncation errors in all finite-difference 
procedures. Due to these errors, the method of characteristics does not emctly 
conserve mass, momentum, and energy. There are means of estimating these 
errors [18], [19], and correcting them [20] if this becomes necessary. No such 
corrections have as yet been undertaken in this work. A very simple way to gain 
an estimate of these errors is to make a calculation in which the body surface 
is held constant in time and then check on how fast the solution at later times 
“drifts” away from the initial steady-state solution. This gives an estimate of 
the rate of growth of errors in the calculation procedure. 

The first calculation reported here was just such a steady-flow check, and 45 
time steps were calculated. It has been found that the most sensitive indicators 
of this drift error are the stagnation pressure and the velocity of the shock wave. 
Plots of these indicators are shown in Fig. 5. In Fig. 5(a) it can be seen that the 
average rate of increase of the stagnation pressure is 0.15% per time step. This 
can be compared to a rate of decrease of 2.0% per time step in the original version 
of the method which used linear interpolation throughout. Thus the change from 
linear to second-degree interpolation contributed to an order-of-magnitude de- 
crease in the error. In Fig. 5(b) note that even though the shock-wave velocity 
has reached 826 ft./set., this is not extremely large when it is considered that a 
V, of 100 ft./set. corresponds to an Nt of only 0.05 in the present calculation. 
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t. MSEC 

FIG. 5(a). Stagnation point pressure drift for steady flow. 

Thus, the shock-wave velocity is quite sensitive to errors and is an area where 
accuracy improvement can be quite beneficial. Also, note that for the short time 
scale of approximately 1 msec. the shock wave does not move very far even for 
these higher velocities. The extent of the shock-wave movement can be seen in 
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FIG. 5. (b) Shock-wave velocity drift for steady flow. 

Fig. 6, where the initial shock-wave location can be compared with its location 
at time step 38. The distortion in the velocity field can be judged by comparing 
Figs. 6 and 4. Figure 7 gives an indication of the amount of drift in the pressure 
field. Note that the drift is largest near the stagnation point as mentioned above. 
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A comment on computation time and calculated flow time might be appropriate 
at this point. First of all, the calculation requires approximately three minutes 
of computer time per time step for this 351-point net. The time is relatively in- 
dependent of the body motion considered. With linear interpolation and by omit- 
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FIG. 6. Steady-flow velocity field at time step 38. 

ting many of the refinements discussed in the previous section, the calculation 
required approximately 1.7 min per time step for the same net of points. The 
programs to perform the calculation and the flow field data for 351 points approx- 
imately fill the 32 OOO-word magnetic-core storage of the machine so that the 
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RG. 7(a). Steady-flow pressure field. 
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graphical plotting programs must be run separately after the calculation. Usually 
three different plots are made for each time step and these require approximately 
10 set per plot. Thus, the steady-flow run of 45 time steps required approximately 
2 h, 37 min, 30 set of computer time. 
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FIG. 7 (b). Steady-flow pressure field. 

The calculated flow time is arbitrary as to its zero point and, to some extent, 
its scale. In Fig. 5 the initial data is shown to be at t = 0. In the calculation it 
was found convenient for reasons of numerical accuracy to multiply the real time 
by a constant velocity to make the dimensions of t the same as the dimensions of 
the space coordinates and to give t the same numerical order of magnitude as the 
space coordinates. This velocity was chosen to be 2000 ft./set. in the calculations 
reported here. It was also found advantageous for reasons of numerical accuracy 
to perform all calculations at a transformed “time” of 0.3 ft. Thus, just before 
a new time step was calculated, an average time for all the data points was deter- 
mined and this average, less 0.3, was subtracted from the time coordinate of all 
points. After the calculation the average, less 0.3, was added to the time coor- 
dinate. 

The second calculation presented here is an unsteady flow where the circular 
cross section of the cylinder is warped to an ellipse whose semimajor axis is 7% 
greater than the radius of the cylinder. The semimajor axis of the ellipse grows 
in time using one-half the period of a cosine function displaced by one-half its 
amplitude. This axis is located at an angle of attack of 20’. The equations for 
the motion of the body surface are 



424 SAUERWEIN 

+x2sin2a+xysin2a+y2cos2a- l=OforO(t_(t,, (24a) 

B(x, y, t) = x2 
( 
F+sin2cz)+xy(l -f,jsin2a 

+ Y2 ( 
qc+cos”a 

) 
-l=O for t>t,, (24b) 

where for this case a = 20°, A = 1.07, to = 0. I5 msec. The body motion is stopped 
for t > 0.15 msec, which falls between time steps 9 and 10. 

Figure 8 shows the pressure on the body surface at y m 0 and the maximum and 
minimum shock-wave velocities as functions of time. In Fig. 8(a) it is seen that 
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FIG. 8(a). Body-surface pressure at y = 0 for unsteady flow. 

the pressure rises rapidly to a peak as the body pushes into the flow and falls 
rapidly again as the body motion stops. Waves then continue to reverberate back 
and forth between the body and the shock as the disturbance decays to a new 
steady state. Note [in Fig. 8(a)] the unsteady flow pressure might be oscillating 
about the increasing steady state average value of pressure at that point. Of course, 
there is no reason to assume that this should be the case because the error growth 
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need not be the same rate or even in the same direction for these two different 
cases. 

Fifty time steps were carried out in this calculation. There is no reason why 
this calculation or the steady-flow case could not have been carried further in 
time. However, it was felt that due to the accumulating error the solution beyond 
50 time steps would be of little value. 
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The shock-wave velocity is in a direction normal to the shock wave in a con- 
stant time plane. The positive sense is toward the body so a positive shock-wave 
velocity corresponds to the shock wave moving toward the body. There is an 
anomalous first motion of the shock toward the body at t = 0.2 msec [in Fig. 
8(b)]. This is explained below. The shock then moves very quickly away from 
the body as is to be expected. It then proceeds to oscillate until, at t = 0.7 msec, 
the maximum velocity appears to hit a plateau and then continues to slowly rise. 
This seems to correspond to the point where the steady-state shock velocity would 
have the same value [see Fig. 5(b)]. Thus, one possible explanation could be that 
the “physical signal” becomes lost in the growing “noise” at this point. 

Figure 9 shows the pressure at the data points closest to y = 0. As can be seen 
from Fig. 10 these points are very close to the axis, but do not lie exactly on it 
and are not in an exactly straight line. This accounts for some of the irregularity 
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in the curves of Fig. 9. As can be seen in Fig. 9(a), the compression wave leaves 
the body and propagates toward the shock. The reason for the anomalous initial 
behavior of the shock wave in Fig. 8(b) can be seen in Fig. 9(a). Note how the 
pressure immediately in front of strong compression wave actually falls below 
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FIG. 10 (a). Unsteady-flow velocity field. 

its initial value. When this small expansion reaches the shock just before the 
compression, it causes the shock to move initially toward the body. This is caused 
by the fitting of the sharp-edged compression wave, which actually has a discon- 
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FIG. 10(b). Unsteady-flow velocity field. 
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tinuity in the first derivative of the dependent variables at its leading edge, with 
continuous second-degree polynomials and thus introducing interpolation errors. 
This could be alleviated by adding more points to the net between the body and 
the shock in order to obtain better resolution of the waves. 
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FIG, 1 l(a). Unsteady-flow pressure field. 

-1.4 

-1.2 

-1 .o 
cl 
2 -0.0 

x -0.6 

-0.4 

-0.2 

C 

V.‘ 
-2.0 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2.0 

Y AXIS 

FIG. 11(b). Unsteady-flow pressure field. 

In Fig. 9(b) the results for the steady flow are also plotted. Note that after the 
steady-flow results are adjusted to make the body surfaces coincide it appears 
that the unsteady solution is oscillating with decreasing amplitude about this 
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steady result. Also note that the same may be true of the shock standoff distance, 
which is to be expected for this mild change in body geometry. It appears that 
the unsteady calculation should reach a steady state in something less than 50 
more time steps. 
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FIG. 1 l(c). Unsteady-flow pressure field. 

Typical velocity vector fields for the unsteady flow are shown in Fig. 10. The 
pressure field is given in Fig. 11. The waves are readily seen in the pressure plots. 
Note, too, in this case, that not much asymmetry is introduced into the flow 
field by the 20’ angle of the attack and 7% semimajor-axis growth. 
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FIG. 11 (e). Unsteady-flow pressure field. 

V. CONCLUSIONS 

From the results of this effort it can be concluded that practical calculations 
of two-dimensional unsteady flows and, in general, calculations of three-inde- 
pendent-variable problems can be accomplished with an extensive programming 
effort and a reasonable amount of computer time on presently available machines. 
The calculation of four-independent-variable problems, at least for the simpler 
cases, should become feasible with the next generation of computers. These con- 
clusions apply to general flow fields because the approach to the method of char- 
acteristics described here is not oriented to a particular flow geometry. 

The results presented here show an order of magnitude decrease in error growth 
rate over the original version of the procedure of [14]. The size of the time step 
was increased fourfold while still maintaining numerical stability, and positive 
control of the location of the data points in the net was established. These impro- 
vements were made without resorting to formal error-correcting procedures such 
as those of [2O].r Of course, higher accuracy can be obtained on the next gen- 
eration of computers by using more data points in the net and higher-precision 
arithmetic. 

1 Further improvements in accuracy have been obtained in recent calculations performed 
after this paper was submitted for publication. They were accomplished by iterating the cal- 
culations to make each time step more nearly a constant time plane and by using smoothing 
techniques to reduce the shock-wave velocity drift. The details of these improvements will be. 
reported later. 
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It appears that there are many interesting problems which can be solved with 
the multidimensional method of characteristics. For example, the unsteady- 
flow results given here suggests that steady, asymmetric blunt-body flows can 
be solved by considering an unsteady warping of the body surface from a simple 
shape to a more interesting one. It should be pointed out that the application of 
the present procedure to three-dimensional steady supersonic flow might be even 
more interesting because many problems in this area require less than 50 calcula- 
tion steps and the procedure in its present form can be applied directly. 
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